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•Analysis:  No cycling or Cycling: 3D-Var (NAVDAS), 4D-Var, EnKF DART 
•Atmosphere: Nonhydrostatic, moving nests, TC physics 
•Ocean:  3D-Var (NCODA), ocean (NCOM),  wave options (SWAN, WWIII) 
•Ensemble:  ICs, BCs, & vortex perturbations; EnKF & ETKF options 
•2016 Ops: 45-15-5km for COTC (NAVGEM ICs BCs) & CTCX (GFS ICs BCs) 
•Real Time: 27-9-3 km 11 member CTCX ensemble 

COAMPS-TC System Overview 

ONR ITOP TY Fanapi: SST (°C), Currents 
Best Track 
COAMPS-TC 

12Z 15 Sep 2010  

Vongfong (2014) Simulated Radar Reflectivity 
COAMPS-TC 
Best Track 
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COAMPS Performance History 
2013-2016 

 

Marked improvement in COAMPS-TC (CTCX)  track and 
intensity forecasts over time (non-homogeneous sample) 

2016 
2016 
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Atlantic Basin 

2016 Operational Statistics 
Position Error Intensity Error & Bias 

CTCX 
COTC 
HWRF 
GFDL 

• Significant improvements in 2016 for CTCX and COTC in both track & intensity 
 Two-way coupling with NCOM 
 Improvements to vortex initialization, physics (new CD param.) 

• CTCX (GFS) and COTC (NAVGEM) fairly close together in terms of overall 
performance, although CTCX better by 1-3 kt (moisture?) and in track too 

CTCX 

COTC 

CTCX 

COTC 
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Example from Gaston (07L) (12Z 28 Aug 2016) 
Atmosphere-Ocean Coupling 

Coupled (2016 model) 
Uncoupled (2015 model) 
Best Track 

Track 

Intensity 

Coupled model SSTs and 10 m winds 

• Both track forecasts are accurate; 
note slow motion of TC through 48h 

• Coupled: Intensity decreases after 12 
h; recovers after 48 h (similar to obs) 

• Uncoupled:  Intensity is too high 
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COAMPS-TC 2017 Version 

Intensity MAE (solid) and ME (dashed) 

Sample size Sample size 

Intensity MAE (solid) and ME (dashed) 

Atlantic/EastPac/WestPac TCs observed to rapidly intensify (0-24 h) 

4 km 

5 km 
4 km 

5 km 

• 2017 version of COAMPS-TC with 4 km horizontal resolution. 
• Intensity MAE is improved at all lead times for the full sample 
• Forecasts are particularly improved for TCs with observed RI  
• Currently testing physics improvements (EDMF and cumulus). 

45/15/5 km (Control) 
36/12/4 km 
Best Track 
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COAMPS-TC 2017 Version 

45/15/5 km (Control) 
36/12/4 km 
Best Track 

Rmax conditional (on intensity) mean 

• Observed Rmax 
decreases w/ intensity 

• For intensity > 80 kt,   4-
km forecasts have 
smaller mean Rmax 
than 5-km forecasts; 
similar to best track  

• Higher resolution model 
can more realistically 
simulate intense storms 
with small inner cores 
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Real-time forecast example:  
Hurricane Joaquin (11L) 

8 

2/3 

Cat 5 

Cat 1 

• Intensity changes (RI) may not be predictable in a deterministic sense. 
• Multi-model ensembles are more capable of accounting for forecast 

uncertainty due to model & IC errors, than a single-model ensemble. 
• Real-time HFIP ensemble: COAMPS-TC (3km), HWRF (3km), GFDL (6km) 
• COAMPS-TC & HWRF control consensus and ensemble mean outperform  

their single-model counterparts in deterministic validation 

High-Resolution Ensemble 

COAMPS-TC/GFDL/HWRF  
Multi-Model Ensemble 
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Ensemble control vs Ensemble mean 
Track MAE Intensity MAE (solid) and ME (dashed  

Sample size Sample size 

COAMPS-TC Ensemble System 
Statistics for ATL and EPAC 

 

• Ensemble mean outperforms control at long lead times 
• Ensemble mean similar or better MAE w.r.t. control for most lead times 
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Ensemble mean error vs Ensemble spread 
Track Intensity 

COAMPS-TC Ensemble System 
Statistics for ATL and EPAC 

• Spread is too large for this sample of cases (ensemble mean very accurate) 
• As in previous years, intensity spread is lacking relative to intensity skill 
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COAMPS-TC COAMPS-TC / HWRF / GFDL 

Track colored by forecast intensity 

COAMPS-TC Ensemble System 
New Forecast Products for 2016 

 



12 

10-m wind threshold exceedance probability 
COAMPS-TC COAMPS-TC / HWRF 

COAMPS-TC Ensemble System 
New Forecast Products for 2016 

 

Available for 34 kt, 50 kt, and 64 kt thresholds, with both animations as shown 
above and static images for tau = 120  
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24 h intensity change probability 
COAMPS-TC COAMPS-TC / HWRF 

COAMPS-TC Ensemble System 
New Forecast Products for 2016 

 

Available for ΔI ≥ 30 in 0 to 24 h, ΔI ≥ 55 in 0 to 48 h, and ΔI ≥ 65 in 0 to 72 h  
(as shown in example above) 
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6-120h Simulated Radar Reflectivity (00Z 2 Oct 2013) 

4 km Uniform Grid 

COAMPS-TC Much Improved for Track & Intensity in 2015/16: 
 

•  Improved intensity error (ocean coupling; new vortex initialization; new CD param) 
•  Improved track errors (new initialization; new physics) 
•  2017 Version:  Significant improvements for intensity (RI); physics upgrades for track 
•  Multi-model high-res. ensemble (NOAA/Navy) and air-ocean coupling promising 
•  Challenges: Prediction of rapid intensification; TC physics; inner core data assimilation 

COAMPS-TC 
Summary and Future Plans 

COAMPS-TC Future Plans: 
 

•  2017+ Priorities  
- TC physics: Emphasis on PBL, clouds  
 Analysis:  4D-Var/EnKF, satellite DA 
- Ensemble: 10-20 members;  stochastic 
- Coupling: Ocean, waves, coupled DA 
- Resolution:   4 km (2017)  
  ~2 km (2019) 
  ~4 km basin scale (2021+) 
 

•  Utilize field observations: ONR TCI,NASA HS3, SHOUT 
•  Future: NEPTUNE and adaptive meshes 
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Next-Generation Models 
Navy’s NEPTUNE 

•Utilize advanced numerical methods in a global model  (e.g., spectral element 
in Navy’s NEPTUNE) to better resolve TCs and the environment. 

•Goal is to achieve global cloud resolving scales (no cu-param. needed) with 
adaptive mesh refinement capability to better resolve TC and cloud processes. 

•Highly scalable on next-generation computer architectures (100K to 1M cores) 

Hendricks et. al. 2015 Hendricks et. al. 2015 

Hurricane Sandy 
12-h Accumulated Precipitation 

Adaptive Mesh Refinement 
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Extra Slides 
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W. Pacific Basin 

2016 Operational Statistics 
Position Error Intensity Error & Bias 

CTCX 
COTC 
HWRF 
GFDL 

CTCX 

COTC 

CTCX 

COTC 

• Significant improvements in 2016 for CTCX and COTC in both track & intensity 
 Two-way coupling with NCOM 
 Smaller (but important) improvements to vortex initialization, physics 

• CTCX and COTC fairly close together in terms of overall performance, 
although CTCX better by 1-3 kt. 
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Valarro and Molinari 

Cecil & Biswas 
HIRAD for Joaquin and Marty 
Dan Cecil 

• Poor inner core data assimilation in models 
• TCI: ~800 sondes deployed in 11 flights 
• TCI Testbed for inner core assimilation 

C. Velden (UW-CIMSS) 

Inner Core Data Assimilation 
ONR Tropical Cyclone Intensity (TCI) Experiment 

 

Xuguang Wang (OU) 

Obs: Radar Control Aircraft Obs Sat AMVs 

Background TDR Radar TCI Sondes All 
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Meranti (16W) 

Rapid Intensification 

Best 

Chaba (21W) 

Best 

 

Many challenges regarding RI and it is unclear what the necessary physics, 
air-sea coupling, data assimilation, resolution needed to predict a “Patricia” 

Patricia (20E) 
(2015) 

Best 
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Rapid intensification probability 
COAMPS-TC COAMPS-TC / HWRF 

COAMPS-TC Ensemble System 
New Forecast Products for 2016 

 

Available for ΔI ≥ 30 in 0 to 24 h, ΔI ≥ 55 in 0 to 48 h, and ΔI ≥ 65 in 0 to 72 h  
(as shown in example above) 
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Benefits of Coupling Hurricane Leslie (2012): 
Intensity Error & Bias 

Uncoupled (param. SST cooling) 
Coupled  

Forecasts every 24 h 

Black line: 
Best track 

Hurricane Leslie (2012): 
2012090600 forecast 

• TC moves little during first 
48 h of forecast; ocean 
interaction of first-order 
importance 

• Coupled model has much 
more accurate intensity 
prediction for all lead 
times.  Track is also 
improved in this case   

For a very slow-moving TC such as 
Leslie, the coupled model substantially 

outperforms uncoupled model in 
intensity prediction 

Atmosphere-Ocean Coupling 
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