

Recent COAMPS-TC Development and Future Plans

James D. Doyle, Jon Mockaitis, Rich Hodur¹, Sue Chen, Hao Jin, Yi Jin, Will Komaromi, Alex Reinecke, Shouping Wang Naval Research Laboratory, Monterey, CA ¹SAIC, Monterey, CA

Acknowledgements: Sponsors (ONR,NRL,NOAA HFIP), NHC, JTWC

Sept. 13, 2016 0510 UTC, MODIS image of Super Typhoon Meranti (NASA)

U.S.NAVAL RESEARCH

COAMPS-TC System Overview

- •Analysis: No cycling or Cycling: 3D-Var (NAVDAS), 4D-Var, EnKF DART
- •Atmosphere: Nonhydrostatic, moving nests, TC physics
- •Ocean: 3D-Var (NCODA), ocean (NCOM), wave options (SWAN, WWIII)
- Ensemble: ICs, BCs, & vortex perturbations; EnKF & ETKF options
- •2016 Ops: 45-15-5km for <u>COTC</u> (NAVGEM ICs BCs) & <u>CTCX</u> (GFS ICs BCs)
- •Real Time: 27-9-3 km 11 member <u>CTCX</u> ensemble

Marked improvement in COAMPS-TC (CTCX) track and intensity forecasts over time (non-homogeneous sample)

Position Error

2016 Operational Statistics

Intensity Error & Bias

- Significant improvements in 2016 for CTCX and COTC in both track & intensity
 - Two-way coupling with NCOM
 - Improvements to vortex initialization, physics (new C_D param.)
- CTCX (GFS) and COTC (NAVGEM) fairly close together in terms of overall performance, although CTCX better by 1-3 kt (moisture?) and in track too

Atmosphere-Ocean Coupling Example from Gaston (07L) (12Z 28 Aug 2016)

U.S. NAVAL RESEARCH

- Both track forecasts are accurate; note slow motion of TC through 48h
- <u>Coupled</u>: Intensity decreases after 12 h; recovers after 48 h (similar to obs)
- •<u>Uncoupled</u>: Intensity is too high

Coupled model SSTs and 10 m winds

COAMPS-TC 2017 Version

Atlantic/EastPac/WestPac

TCs observed to rapidly intensify (0-24 h)

- 2017 version of COAMPS-TC with 4 km horizontal resolution.
- Intensity MAE is improved at all lead times for the full sample
- Forecasts are particularly improved for TCs with observed RI
- Currently testing physics improvements (EDMF and cumulus).

COAMPS-TC 2017 Version

Rmax conditional (on intensity) mean

 Observed Rmax decreases w/ intensity

- For intensity > 80 kt, 4km forecasts have smaller mean Rmax than 5-km forecasts; similar to best track
- Higher resolution model can more realistically simulate intense storms with small inner cores

- Intensity changes (RI) may not be predictable in a deterministic sense.
- Multi-model ensembles are more capable of accounting for forecast uncertainty due to model & IC errors, than a single-model ensemble.
- Real-time HFIP ensemble: COAMPS-TC (3km), HWRF (3km), GFDL (6km)
- COAMPS-TC & HWRF control consensus and ensemble mean outperform their single-model counterparts in deterministic validation

COAMPS-TC Ensemble System Statistics for ATL and EPAC

Ensemble control vs Ensemble mean

- Ensemble mean outperforms control at long lead times
- Ensemble mean similar or better MAE w.r.t. control for most lead times

COAMPS-TC Ensemble System Statistics for ATL and EPAC

Ensemble mean error vs Ensemble spread

Track

Intensity

Spread is too large for this sample of cases (ensemble mean very accurate)
As in previous years, intensity spread is lacking relative to intensity skill

Track colored by forecast intensity

COAMPS-TC

COAMPS-TC / HWRF / GFDL

11

10-m wind threshold exceedance probability

COAMPS-TC

COAMPS-TC / HWRF

Available for 34 kt, 50 kt, and 64 kt thresholds, with both animations as shown above and static images for tau = 120

24 h intensity change probability

COAMPS-TC

CTCXEPS: TC = 07L2016, DTG = 2016082600

24 h lead time window

Δ I >= 30 kt (Rapid Intensification) 10 kt <= Δ I < 30 kt (Moderate Intensification) -10 kt < Δ I < 10 kt (Steady Intensity) -30 kt < Δ I <= -10 kt (Moderate Weakening)

△ I <= -30 kt (Rapid Weakening)

TC already dissipated or dissipates during window

COAMPS-TC / HWRF

24 h lead time window

 Δ | >= 30 kt (Rapid Intensification) 10 kt <= Δ | < 30 kt (Moderate Intensification) -10 kt < Δ | < 10 kt (Steady Intensity) -30 kt < Δ | <= -10 kt (Moderate Weakening) Δ | <= -30 kt (Rapid Weakening) TC already dissipated or dissipates during window

Available for $\Delta I \ge 30$ in 0 to 24 h, $\Delta I \ge 55$ in 0 to 48 h, and $\Delta I \ge 65$ in 0 to 72 h (as shown in example above)

COAMPS-TC Summary and Future Plans

COAMPS-TC Much Improved for Track & Intensity in 2015/16:

- Improved intensity error (ocean coupling; new vortex initialization; new C_D param)
- Improved track errors (new initialization; new physics)
- 2017 Version: Significant improvements for intensity (RI); physics upgrades for track
- Multi-model high-res. ensemble (NOAA/Navy) and air-ocean coupling promising
- <u>Challenges</u>: Prediction of rapid intensification; TC physics; inner core data assimilation

COAMPS-TC Future Plans:

- 2017+ Priorities
 - TC physics: Analysis:
 - Ensemble:
 - Coupling:
 - Resolution:

Emphasis on PBL, clouds

- 4D-Var/EnKF, satellite DA
- 10-20 members; stochastic
- Ocean, waves, coupled DA
- 4 km (2017)
- ~2 km (2019)
- ~4 km basin scale (2021+)

- Utilize field observations: ONR TCI,NASA HS3, SHOUT
- Future: NEPTUNE and adaptive meshes

Next-Generation Models Navy's NEPTUNE

- •Utilize advanced numerical methods in a global model (e.g., spectral element in Navy's NEPTUNE) to better resolve TCs and the environment.
- •Goal is to achieve global cloud resolving scales (no cu-param. needed) with adaptive mesh refinement capability to better resolve TC and cloud processes.
- Highly scalable on next-generation computer architectures (100K to 1M cores)

Hurricane Sandy 12-h Accumulated Precipitation

Adaptive Mesh Refinement

Extra Slides

2016 Operational Statistics

Intensity Error & Bias

- Significant improvements in 2016 for CTCX and COTC in both track & intensity
 - Two-way coupling with NCOM

U.S.NAVAL

Position Error

- Smaller (but important) improvements to vortex initialization, physics
- CTCX and COTC fairly close together in terms of overall performance, although CTCX better by 1-3 kt.

-82 -80 -78 -76 -74 -72 -70 -68 -66 -64 TCI flight montage Hurr Joaquin Oct 2-5 2015

18

Rapid Intensification

Many challenges regarding RI and it is unclear what the necessary physics, air-sea coupling, data assimilation, resolution needed to predict a "Patricia"

Rapid intensification probability

COAMPS-TC

COAMPS-TC / HWRF

Available for $\Delta I \ge 30$ in 0 to 24 h, $\Delta I \ge 55$ in 0 to 48 h, and $\Delta I \ge 65$ in 0 to 72 h (as shown in example above)

Atmosphere-Ocean Coupling

U.S.NAVAL

ABORATORY

Hurricane Leslie (2012):

2012090600 forecast